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Problem 1 (14 points)

Figure 1: Resistor network.

Consider the circuit in Figure 1. Assume ideal components and the following parameters: 𝑅1 = 𝑅2 =

1𝑘Ω, 𝑅3 = 𝑅4 = 2𝑘Ω, 𝑉 = 12V, 𝐼 = 6mA

(a) (2 points) Clearly state the Norton theorem.

(b) (4 points) Determine the equivalent resistance 𝑅𝑒𝑞 seen between the output pins.

(c) (4 points) Determine the Norton equivalent current 𝐼𝑠𝑐 using the superposition principle.

(d) (4 points) Consider now a 10𝑘Ω load resistor placed between the output pins. What will be the

voltage over this resistor? Before calculating, draw the equivalent circuit and write the general

equation for the voltage across the load.
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Problem 1 - Solution [14]

Point a [2]

Norton Theorem: Any linear electric network can be replaced by an equivalent circuit containing a single

independent current source 𝐼𝑁𝑜 and parallel resistance 𝑅𝑁𝑜 . The theorem is applied to the network after

shorting the load between two arbitrary terminals A and B. The equivalent current 𝐼𝑁𝑜 is the current

found between the terminals A and B. The equivalent resistor 𝑅𝑁𝑜 is the resistance between the terminals

A-B calculated after replacing all voltage sources with a short circuit and all current sources with an open

circuit (i.e., replace each source with its ideal internal resistance).

Point b [4]

In order to find 𝑅𝑒𝑞 we replace the voltage & current sources with their internal resistances, that are zero

& infinite respectively. Thus, replace the current source with an open circuit, and the voltage source with

a closed circuit, allowing us to redraw the circuit as shown in Figure 2, giving:

𝑅1 = 𝑅2 = 1kΩ,

𝑅3 = 𝑅4 = 2kΩ

𝑅𝑒𝑞 = 𝑅4 + (𝑅1 + 𝑅2)//𝑅3 = 𝑅4 +
(

1

𝑅1 + 𝑅2
+ 1

𝑅3

)−1
= 𝑅4 +

(
𝑅3(𝑅1 + 𝑅2)
𝑅1 + 𝑅2 + 𝑅3

)
= 3 kΩ

Figure 2: Norton equivalent circuit: finding 𝑅𝑒𝑞

Point c [4]

The short-circuit current can be calculated using the superposition principle, studying the circuit with only

one source at a time. First, keeping only the current source ignoring the voltage source, the short-circuited

circuit can be redrawn (see Fig. 3). Then, we keep only the voltage source and ignoring the current source,

the short-circuit circuit becomes that in Fig. 4.

Case 1: Current source only

To find the short-circuit current 𝐼𝑆𝐶,1, we can start by finding 𝐼2, which will once again branch off to give

𝐼𝑆𝐶,1.

Figure 3: Using Norton equivalent circuit and superposition to find 𝐼𝑆𝐶 for
only the current source
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each branch

current is inversely
proportional to its
resis-
tance/impedance

𝐼2 = 𝐼
𝑅1

𝑅1︸︷︷︸
current through 𝑅1

+ 𝑅2 + 𝑅3//𝑅4︸          ︷︷          ︸
current through rest

=⇒ 𝐼𝑆𝐶,1 = 𝐼2
𝑅3

𝑅3 + 𝑅4
=

(
𝐼 𝑅1

𝑅1 + 𝑅2 + 𝑅3//𝑅4

)
𝑅3

𝑅3 + 𝑅4

𝑅1 = 𝑅2 = 1kΩ,

𝑅3 = 𝑅4 = 2kΩ,
𝐼 = 6mA

𝐼𝑆𝐶,1 =
𝐼𝑅1

𝑅1 + 𝑅2 +
𝑅3𝑅4

𝑅3 + 𝑅4

𝑅3

𝑅3 + 𝑅4
=

𝐼𝑅1

(𝑅1 + 𝑅2)(𝑅3 + 𝑅4) + 𝑅3𝑅4

����𝑅3 + 𝑅4

𝑅3

����𝑅3 + 𝑅4
= 1mA

Case 2: Voltage source only

To find the short-circuit current 𝐼𝑆𝐶,2 =, it is useful to redraw it as in figure 4. After this, we start with

the total current 𝐼total =
𝑉

𝑅3 + (𝑅1 + 𝑅2)//𝑅4

Figure 4: Using Norton equivalent circuit and superposition to find 𝐼𝑆𝐶 for
only the voltage source

𝐼𝑆𝐶,2 = 𝐼𝑡𝑜𝑡𝑎𝑙
𝑅1 + 𝑅2

𝑅4︸︷︷︸
current through 𝑅4 = 𝐼𝑆𝐶,2

+ 𝑅1 + 𝑅2︸   ︷︷   ︸
current through rest

=

(
𝑉

𝑅3 + (𝑅1 + 𝑅2)//𝑅4

)
𝑅1 + 𝑅2

𝑅4 + (𝑅1 + 𝑅2)

𝑅1 = 𝑅2 = 1kΩ,

𝑅3 = 𝑅4 = 2kΩ,
𝑉 = 12V,
𝐼total =
12V/3kΩ =

4mA,
𝐼total = 4mA

𝐼𝑆𝐶,2 =
𝑉

𝑅3 +
(𝑅1 + 𝑅2)𝑅4

𝑅1 + 𝑅2 + 𝑅4

𝑅1 + 𝑅2

𝑅4 + (𝑅1 + 𝑅2)
=

𝑉

𝑅3 +
(𝑅1 + 𝑅2)𝑅4

((((((
𝑅1 + 𝑅2 + 𝑅4

𝑅1 + 𝑅2

(((((((
𝑅4 + (𝑅1 + 𝑅2)

= 2mA

You could also find 𝐼𝑆𝐶,2 using the voltage drop across resistor 𝑅4 divided by its resistance.

Here, we use a potential divider setup to find the voltge drop, giving

𝐼𝑆𝐶,2 =
𝑉𝑅4

𝑅4
=

1

𝑅4
𝑉

(𝑅1 + 𝑅2)//𝑅4

𝑅3 + (𝑅1 + 𝑅2)//𝑅4
= 2mA.

Therefore, the total short-circuit current found through the method of superposition will be

𝐼𝑁𝑜 = 𝐼𝑆𝐶 = 𝐼𝑆𝐶,1 + 𝐼𝑆𝐶,2 = 3mA.
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Point d [4]

𝑅𝑒𝑞 = 3kΩ

𝑅𝐿 = 10kΩ

𝑅𝑒𝑞//𝑅𝐿 =
30

13
kΩ

𝐼𝑆𝐶 = 3mA

In order to find the behaviour when a load resistor is placed across the output terminals, we can replace

the circuit by its Norton equivalent, which is characterized by 𝐼𝑁𝑜 = 𝐼𝑆𝐶 = 3mA and 𝑅𝑁𝑜 = 𝑅𝑒𝑞 = 3 kΩ.

The resultant circuit is shown in Fig. 5, and we see that the voltage across the load can be found using

Ohm’s Law with the current source and the parallel resistors. For a load resistor 𝑅𝐿 = 10 kΩ, the voltage

drop 𝑉𝐿 with current 𝐼𝐿 passing through it (find using current divider) is given by:

𝑉𝐿 = 𝐼𝐿𝑅𝐿 =

(
𝐼𝑆𝐶

𝑅𝑒𝑞

𝑅𝑒𝑞 + 𝑅𝐿

)
𝑅𝐿 or 𝑉𝐿 =

𝐼𝑆𝐶

𝑅𝑒𝑞//𝑅𝐿

Thus, the voltage across the resistor will be 𝑉𝐿 =
9
13mA · 10 kΩ ≈ 6.923V.

Figure 5: Norton equivalent circuit with load resistor 𝑅𝐿

Remarks

• This problem is rooted in the superposition principle and is analogous to Top problem 2.2 with

minor changes such as the voltage/current sources having exchanged places, and there are only 4

resistors in this problem as compared to the five in the Top problem.

• This builds on the notion of equivalent circuits and the effects of loading: the extent of knowledge

needed is mostly limited to Ohm’s law
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Problem 2 (22 points)

Figure 6: Circuit with op-amp.

Consider the circuit in Figure 6. It operates in a sinusoidal regime with an ideal opamp and ideal

components.

(a) (18 points) Find the transfer function 𝐻(𝑗𝜔) = 𝑣𝑜
𝑖in

between 𝑖𝑖𝑛 and 𝑣𝑜 , depending only on 𝑅1, 𝑅2, 𝐶1,

and 𝜔. Then, given that 𝑅1 = 𝑅2 = 1𝑘Ω, 𝐶1 = 1�F, and 𝑖𝑖𝑛 = 2 sin(𝜔𝑜𝑡)mA with 𝜔𝑜 = 1000rads/𝑠,
find 𝑣𝑜 as a function of time 𝑡.

Figure 7: Circuit with extra resistor.

(b) (4 points) We add a resistor to the circuit as shown in figure 7. Explain, without calculating, what

(if anything) this changes to the transfer function (e.g. frequency dependence, gain) and why.
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Problem 2 - Solution

Point a [18]

Solution

Using a potential divider setup (see Figure 8), we can see that 𝑣− = 𝑣0
𝑅1

𝑅1 + 𝑅2
. Further, the non-

inverting input to the op-amp 𝑣+ can be found using the impedance in parallel to the current source,

giving 𝑣+ = 𝑖𝑖𝑛𝑍𝐶1
= 𝑖𝑖𝑛

1

𝑗𝜔𝐶1
.

Figure 8: Using a potential divider to find the transfer function of the
op-amp circuit

As follows from an ideal op-amp, 𝑣+ = 𝑣− thus:

𝑣+ = 𝑣− =⇒ 𝑖𝑖𝑛
1

𝑗𝜔𝐶1
= 𝑣0

𝑅1

𝑅1 + 𝑅2
=⇒ 𝑣0 = 𝑖𝑖𝑛

𝑅1 + 𝑅2

𝑅1

1

𝑗𝜔𝐶1
= 𝑖𝑖𝑛

(
1 + 𝑅2

𝑅1

)
1

𝑗𝜔𝐶1

∴ 𝐻(𝑗𝜔) ≡ 𝑣0

𝑖𝑖𝑛
=

(
1 + 𝑅2

𝑅1

)
1

𝑗𝜔𝐶1
=⇒ 𝑣0 =

(
1 + 𝑅2

𝑅1

)
𝑖𝑖𝑛

𝑗𝜔𝐶1

∵ 𝐻(𝑗𝜔) ≡ 𝑣0

𝑖𝑖𝑛
=⇒ 𝑣0 =

(
1 + 𝑅2

𝑅1

)
𝑖𝑖𝑛

𝑗𝜔𝐶1
=

(
1 +

�
��

1 kΩ

1 kΩ

)
2mA sin𝜔0𝑡

𝑗𝜔0 · 1 µF
= −𝑗 sin𝜔0𝑡

𝜔0

4��mA

𝜔0����
1 × 10−6F

=⇒ 𝑣0(𝑡) =
−4000𝑗
𝜔0

sin𝜔0𝑡 V = −4𝑗 sin
(
𝜔0𝑡 −

𝜋
2

)
V for 𝜔0 = 1000 rad s−1

=⇒ 𝑣0(𝑡) = 4 sin(1000𝑡 − 𝜋
2 ) = −4 cos(1000𝑡)V

Point b [4]

Solution

The addition of the resistor to the output of the op-amp has no influence on the potential divider setup to

find 𝑣− and thus feedback, the transfer function 𝐻(𝑗𝜔) remains unchanged; this means that the op-amp

will generate the same output voltage 𝑣0 regardless of the influence of this additional resistor. In essence,

the gain, the frequency, and op-amp output stay the same, due to the position of this resistor.

Remarks

• Comparable to the concepts and complexity of a range of op-amp based problems as sampled in Top

problems 4–7 (similar but takes the concepts further: Top problems 8–10).
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Problem 3 (18 points)

Figure 9: RLC circuit.

Consider the circuit in Figure 9. Assume sinusoidal regime, ideal components and the following param-

eters: 𝐶1 = 1 F, 𝐶2 = 2 F, 𝑅 = 1 Ω, 𝐿 = 1 H, 𝑖1 = 𝐼1 sin(𝜔𝑡), and 𝜔 = 1 rads/𝑠.

(a) (4 points) Write the impedance of each element (𝐿1,𝑅1,𝐶1, and 𝐶2) and use the parameters provided

above to express it as a complex impedance in Ohms.

(b) (10 points) Calculate the amplitude of the output voltage, 𝑉𝑜 , at the terminals as a function of the

amplitude of the input current, 𝐼1.

(c) (4 points) What is the current through 𝐶1 as 𝜔 −→ 0? What about the case 𝜔 −→ ∞? Explain your

answer in detail.

8



Problem 3 - Solution

Point a [4]

Solution

The complex impedances for 𝑅1 = 1Ω, 𝐿1 = 1H, 𝐶1 = 1F, 𝐶2 = 2F, 𝜔 = 1 rad s−1, and 𝑖1 = 𝐼1 sin𝜔𝑡 are

as follows:

• 𝐶1: 𝑍𝐶1
= 1

𝑗𝜔𝐶1
= 1

𝑗 = −𝑗 Ω

• 𝐶2: 𝑍𝐶2
= 1

𝑗𝜔𝐶2
= 1

2𝑗 =
−1
2 𝑗 Ω

• 𝐿1: 𝑍𝐿1 = 𝑗𝜔𝐿1 = 𝑗 Ω

• 𝑅1: 𝑍𝑅1
= 𝑅1 = 1Ω

Point b [10]

Solution

Figure 10: RLC circuit with the voltage across the pair of parallel
connections 𝑉𝑥 indicated

The voltage across the parallel pairs in the circuit (across 𝑅1 and 𝐿1, and across 𝐶1 and 𝐶2) can be found

by Ohm’s law — this will use the current from the source 𝑖1, and the circuit’s (input) impedance over the

parallel pairs, which is (𝑍𝑅1
+ 𝑍𝐿1)//(𝑍𝐶1

+ 𝑍𝐶2
).

𝑅1 = 1Ω

𝐿1 = 1H

𝐿1 = 1F

𝐶1 = 2F

𝜔 = 1 rad s−1

𝑍𝑅1 = 1Ω

𝑍𝐿1 = 𝑗 Ω

𝑍𝐶1 = −𝑗 Ω

𝑍𝐶2 = − 1
2 𝑗 Ω

𝑣𝐶 = 𝑖1(𝑍𝑅1
+ 𝑍𝐿1) // (𝑍𝐶1

+ 𝑍𝐶2
) = 𝑖1 [(1 + 𝑗) Ω // (−3/2𝑗 Ω)] = 𝑖1

[
1

1 + 𝑗
+ 1

−3/2𝑗

]−1
= 𝑖1

(1 + 𝑗)(−3/2𝑗)
(1 + 𝑗) + (−3/2𝑗) = 𝑖1

3/2(1 − 𝑗)
1 − 1/2𝑗 = 𝑖1

3(1 − 𝑗)
2 − 𝑗

= 3𝑖1
(1 − 𝑗)(2 + 𝑗)
(2 − 𝑗)(2 + 𝑗)

∴ 𝑣𝐶 =
3 𝑖1
5

(3 − 𝑗) V or 𝑣𝐶 =
3/2(1 − 𝑗)
1 − 1/2𝑗 𝑖1

To find the current going to the capacitors, 𝑖𝐶 , we use Ohm’s law again, this time in the form 𝑣𝐶 = 𝑖𝐶𝑍𝐶1 , 𝐶2
,

giving us:

𝑖𝐶 =
𝑣𝐶

𝑍𝐶1 , 𝐶2

=
𝑣𝐶

𝑍𝐶1
+ 𝑍𝐶2

=
𝑣𝐶

[1/𝑗𝜔𝐶1 + 1/𝑗𝜔𝐶2]
= 𝑗𝜔𝑣𝐶

1

1

𝐶1
+ 𝑑 1

𝐶2

= 𝑗𝑣𝐶
1

1

1
+ 𝑑 1

2

= 𝑗𝑣𝐶
1
3/2 =

2

3
𝑗 𝑣𝐶

=
2

�3
𝑗
�3 𝑖1
5

(3 − 𝑗) or
�
��2

3
𝑗 �
�3/2(1 − 𝑗)
1 − 1/2𝑗 =⇒ 𝑖𝐶 =

2𝑖1
5

(3 − 𝑗) or 𝑖𝐶 =
1 + 𝑗

1 − 1/2𝑗

Following this, the output voltage 𝑣0 = 𝑖𝐶𝑍𝐶1
turns out to be:

9



ac12ji1 V

The current through the capacitors 𝑖𝐶 can also be found using a current divider:
the current in each
branch is inversely
proportional to its
resistance (or
impedance)

𝑖𝐶 = 𝑖1
𝑍𝑅1𝐿1

𝑍𝑅1𝐿1 + 𝑍𝐶1𝐶2

= 𝑖1
𝑍𝑅1

+ 𝑍𝐿1
𝑍𝑅1

+ 𝑍𝐿1 + 𝑍𝐶1
+ 𝑍𝐶2

= 𝑖1
𝑅1 + 𝑗𝜔𝐿1

𝑅1 + 𝑗
[
𝜔𝐿1 − 1

𝜔 (1/𝐶1 + 1/𝐶2)
]

Thus, once again using Ohm’s law, the output voltage 𝑣0 = 𝑖𝐶𝑍𝐶1
is found to be:

𝑣0 = 𝑖𝐶𝑍𝐶1
= 𝑖1

𝑍𝑅1
+ 𝑍𝐿1

𝑍𝑅1
+ 𝑍𝐿1 + 𝑍𝐶1

+ 𝑍𝐶2

· 𝑍𝐶1
= 𝑖1

𝑅1 + 𝑗𝜔𝐿1

𝑅1 + 𝑗𝜔𝐿1 + 1
𝑗𝜔𝐶1

+ 1
𝑗𝜔𝐶2

1

𝑗𝜔𝐶1

= −𝑗𝑖1
1 + 𝑗

1 + CC𝑗 − CC𝑗 −
1
2 𝑗

= 𝑖1
1 − 𝑗

1 − 1
2 𝑗

= 𝑖1

1
2 − 3

2 𝑗

1 + 1
2 𝑗

2
=

4𝑖1
5

(
3

2
− 1

2
𝑗

)
=⇒ 𝑣0 =

2𝑖1
5

(3 − 𝑗) V

The output voltage 𝑣0 can also be found using a potential divider setup for 𝑣𝐶 splitting

between the two capacitors:

𝑣0 = 𝑣𝐶
𝑍𝐶1

𝑍𝐶1
+ 𝑍𝐶2

= 𝑣𝐶
−𝑗

−𝑗 − 1/2𝑗 = 𝑣𝐶
��−𝑗

��−𝑗 3/2
=⇒ 𝑣0 =

2

3
𝑣𝐶

𝑣0 =
2

3
𝑣𝐶 =

2

�3

�3 𝑖1
5

(3 − 𝑗) =⇒ 𝑣0 =
2𝑖1
5

(3 − 𝑗) V

Through both methods, the same result is obtained, where: 𝑣0 =
2𝑖1
5

(3 − 𝑗) V

Thus, the amplitude 𝑉0 of the output voltage 𝑣0 in terms of the amplitude 𝐼1 of the input current 𝑖1 is:

𝑉0 = |𝑣0 | =
����2𝑖15 (3 − 𝑗)

���� = 2𝐼1
5

|3 − 𝑗 | = 2𝐼1
5

√
32 + −12 =⇒ 𝑉0 =

2
√
10

5
𝐼1 ≈ 1.265𝐼1

Point c [4]

Solution

At 𝜔 −→ 0, the impedance of the capacitors tends to infinity (𝑍𝐶 −→ ∞), causing the current through

𝐶1 to vanish (𝑖𝐶 −→ 0). At 𝜔 −→ ∞, the impedance of the capacitors drops to zero (𝑍𝐶 −→ 0), while

the impedance of the inductor goes to infinity (𝑍𝐿 −→ ∞), thus the current becomes equal to 𝑖1 since it

doesn’t flow through the inductor and all of it only flows to the capacitors.

Remarks

• Behaviour of filters and a combination of RLC components can be practiced in problems such as Top

problem 4 and those of Chapters 6 and 8 in the accompanying textbook for this course, Electronics:

A Systems Approach by Neil Storey (6𝑡ℎ edition).
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Problem 4 (16 Points)

Legend:

𝐴 · 𝐵 = AND

𝐴 + 𝐵 = OR

𝐴 = NOT A

(a) (4 points) Fill out the Karnaugh map to represent the expression below and use it to optimise

the logic needed to implement the given expression. Please extract the reduced logic formula out

of the Karnaugh map and do not use algebraic simplifications.

𝑦 = (𝐷 ·𝐶 ·𝐴 ·𝐵)+(𝐷 ·𝐶 ·𝐴 ·𝐵)+(𝐷 ·𝐶 ·𝐴 ·𝐵)+(𝐷 ·𝐶 ·𝐴 ·𝐵)+(𝐷 ·𝐶 ·𝐴 ·𝐵)+(𝐷 ·𝐶 ·𝐴 ·𝐵)+(𝐷 ·𝐶 ·𝐴 ·𝐵)

(b) (12 points) Design a synchronous modulo 5 up-counter as shown in the state table below based on

JK-flipflops. Make use of Karnaugh diagrams and obtain the correct Boolean expression for each Q,

then draw the circuit.

State 𝑄1 𝑄2 𝑄3

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

Table 1: The state table for a modulo 5 up-counter

Hint: start with a modulo-8 counter and then use a reset at the right moment.
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Problem 4 - Solution

Point a [4]

Solution

Karnaugh maps are ordered in Gray code to ensure that only one variable changes between adjacent cells,

and each cell is filled in with a binary digit corresponding to the output based on the cell’s inputs. Each of

the terms in 𝑦 = (�̄� ·�̄� ·𝐴 ·�̄�)+(�̄� ·�̄� ·𝐴 ·𝐵)+(𝐷 ·𝐶 ·�̄� ·�̄�)+(𝐷 ·𝐶 ·𝐴 ·�̄�)+(𝐷 ·𝐶 ·𝐴 ·𝐵)+(�̄� ·𝐶 ·𝐴 ·�̄�)+(�̄� ·𝐶 ·𝐴 ·𝐵)
appear as ‘1’ on the cells, the rest are zeroes.

Mark all groups of 2 (one variable reduced), 4 (two variables reduced), 8 (3 variables reduced), 16 (all

variables reduced) that you can find, individual positions can be used in multiple groups. Groups can be

formed over the edge. Some possible Karnaugh maps are listed on the next page. After drawing the maps,

we can find the simplified expression:

𝑦 = (𝐴 · 𝐷) + (𝐵 · 𝐶 · 𝐷) + (𝐴 · 𝐶)

On (some of) the possible Karnaugh maps shown, the terms in 𝑦 correspond to the following coloured

groupings:

𝑦 = (𝐴 · 𝐷)︸ ︷︷ ︸
green

+ (𝐵 · 𝐶 · 𝐷)︸      ︷︷      ︸
yellow

+ (𝐴 · 𝐶)︸ ︷︷ ︸
red

Legend:

𝐴 · 𝐵 = AND

𝐴 + 𝐵 = OR

𝐴 = NOT A
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Point b [12]

Solution

In order to design the counter, we first create the state table as shown in Table 2. From this, we can then

set up the Karnaugh maps, allowing us to find the expressions, as shown below.

Current state Next state 𝑄1 𝑄2 𝑄3 𝑄1’ 𝑄2’ 𝑄3’ 𝐽1 𝐾1 𝐽2 𝐾2 𝐽3 𝐾3

0 1 0 0 0 0 0 1 0 x 0 x 1 x

1 2 0 0 1 0 1 0 0 x 1 x x 1

2 3 0 1 0 0 1 1 0 x x 0 1 x

3 4 0 1 1 1 0 0 1 x x 1 x 1

4 0 1 0 0 0 0 0 x 1 0 x 0 x

Table 2: State table for the modulo 5 up-counter

𝑄2𝑄3

𝑄1

00 01 11 10

0

1

10 0 0

x x xx

𝑄2𝑄3

𝑄1

00 01 11 10

0

1 1

x x xx

x xx

J1 = Q2Q3 K1 = 1

𝑄2𝑄3

𝑄1

00 01 11 10

0

1

10

0

xx

x xx

𝑄2𝑄3

𝑄1

00 01 11 10

0

1

1 0x x

x x xx

J2 = Q3 K2 = Q3

𝑄2𝑄3

𝑄1

00 01 11 10

0

1

1 1

0

x x

x xx

𝑄2𝑄3

𝑄1

00 01 11 10

0

1

1 1x x

x x xx

J3 = Q1 K3 = 1

14



After finding the simplified expressions from the Karnaugh maps, we can draw the circuit:

Figure 11: The circuit obtained for the modulo-5 counter

Remarks

• The Karnaugh map for question 4(a) is comparable to the one provided in the solution of Exercise

24.16 in the accompanying textbook (Electronics: A Systems Approach by Neil Storey (6𝑡ℎ edition))

- and is provided in week 6 tutorials on Nestor. The Karnaugh maps needed for Exercises 24.23 and

24.24 (part of the tutorial assignments of week 6, see Nestor and related solutions) are somewhat

more complex than this one.

• This counter design problem is a simplified version of Top problem 12.1, using 3 bits instead of 4.
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